6. If 180 people were surveyed and 135 of them said they watch more than 3 hours of tv a day, what percent of people said they watch more than 3 hours of $t v$ a day?

Try modeling this on the flexible model. If you set the whole to 180 and the shaded part to 135 , you can see that 135 is 75% of 180 .

7. Imagine you want to buy something that costs $\$ 140$ and you have a coupon for $\mathbf{2 5 \%}$ off. Can you use the model to figure out how much you will pay? (Hint: Try making the whole $\$ 140$ and moving the orange dot to 100%, then go back by 25%.)

The model shows that when you take 25% off $\$ 140$, you get $\$ 105$. (Can you see that taking 25% off leaves 75% ?)

8. What if the store is having a clearance sale and the thing that cost $\$ 140$ is $\mathbf{7 5 \%}$ off (but you can't use your coupon)? How much will it cost then?

When you take 75% off $\$ 140,25 \%$ is left. The item will cost $\$ 35$.

9. Imagine you own a store and you want to raise the prices by $\mathbf{2 5 \%}$. If something costs $\mathbf{\$ 6 0}$ now, how much will it cost after you raise the price?

In this model, the whole is $\$ 60$ because that's the original price of the item. Look at 25%. It's $\$ 15$. Raising the price by 25% means raising it by $\$ 15$. Notice that the piece that's added on is the same size as each of the four blocks. The item will cost \$75.

10. If the price of something is $\$ 150$ after it has been increased by $\mathbf{2 5 \%}$, what was the price before it was increased?

Look at the model below. The shaded part is set to $\$ 150$. Putting the whole at $\$ 120$ makes the extra shaded part the same size as the other four blocks, so the original cost was $\$ 120$. You can check by looking at 25% of $\$ 120$ and adding it on to $\$ 120$.

11. Which is more: $\mathbf{2 5 \%}$ of $\mathbf{1 8 0}$ or $\mathbf{7 5 \%}$ of $\mathbf{1 2 0}$? Try to guess first and then use the model to see if you were right. This model shows 25% of 180 which is 45 :

This model shows 75% of 120 which is 90 :

75% of 120 is bigger.
Estimation challenges: (You might have estimated differently. If your answers are close to these, you did fine!)
12. About how much is $\mathbf{2 5 \%}$ of $\mathbf{1 4 3}$? You might think of 143 as being close to 140 . Half of 140 is 70 and half of 70 is 35 . So 25% of 143 is about 35 . Since 143 is a little bigger than $140,25 \%$ of it is a little bigger than 35 .
13. About how much is $\mathbf{7 5 \%}$ of $\mathbf{1 7 5}$? 175 is a little less than 180 . To find 75% of 180 , you could find 25% of it and then multiply it by 3.25% of 180 is 45 , so 75% of 180 is 135.75% of 175 is a little less than 135 .
14. If $\mathbf{1 4}$ out of $\mathbf{2 0}$ people in a room are wearing glasses, what percent is that close to? Is it more or less than that percent? 15 out of 20 is 75%, so 14 is a little less than 75% of 20 .
15. If $\mathbf{2 3 \%}$ of a number is $\mathbf{1 5}$, about how big is the number? 23% is a little less than 25%. If 25% is 15 , then the whole is 60 . If 23% of the number is 15 , then the number is a little bigger than 60 .

